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PREFACE

This report evaluates a common and often unacknowledged assumption used in numerical 

models of solute transport in transient ground-water flow. This work was conducted as 
part of the Research Project on Transport Modeling in Saturated Zone and the improved 

numerical procedures described herein have been incorporated into the general solute- 

transport model of Konikow and Bredehoeft (Techniques of Water-Resources 

Investigations, Book 7, Chapter C2,1978). Correspondence on this report and on the 

computer program of Konikow and Bredehoeft should be addressed to:

Transport Modeling in Saturated Zone Project 
U.S. Geological Survey 
431 National Center 
Reston, VA 22092

Copies of the computer program for the model of Konikow and Bredehoeft are available at 

cost of processing from:

U.S. Geological Survey 
WATSTORE Program Office 
437 National Center 
Reston, VA 22092
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GOVERNING EQUATIONS AND MODEL APPROXIMATION ERRORS
ASSOCIATED WITH THE EFFECTS OF FLUID-STORAGE TRANSIENTS

ON SOLUTE TRANSPORT IN AQUIFERS

by Daniel J. Goode

ABSTRACT

During transient ground-water flow, the fluid mass per unit volume of aquifer 

changes as the potentiometric head changes, and solute transport is affected by this change 
in fluid storage. Three widely applied numerical models of two-dimensional transport 

incorporate the effects of transient flow on solute transport by removing redundant flow- 
equation terms from the transport equation. However, in certain circumstances fluid- 
storage terms remaining in the transport equation are erroneously held constant in these 
models. For the case of increasing heads, this approximation leads to velocities that are too 

high and reduced dilution at fluid and solute sources. These errors are quantified by means 
of two simple analytical examples and a numerical simulation. In some cases, the errors 
induced in transport simulations by ignoring temporal changes in fluid-storage terms are 
comparable to the errors from assuming steady-state flow. Errors in source calculations are 
generally smaller than errors in flux terms. During transient flow in water-table aquifers, 

solute transport may be affected more by changing fluid storage than by changes in 

transmissivity due to saturated thickness changes. For conceptual models that are based on 

the assumption of constant fluid density, the product of porosity and aquifer thickness 
changes in time: initial porosity times thickness plus the change in head times the storage 

coefficient. This formula reduces to the saturated thickness in water-table aquifers if 
porosity is assumed to be equal to the storage coefficient.

INTRODUCTION

For quantitative simulation, ground-water flow and solute transport in aquifers are 

represented by a system of equations, with attendant boundary and initial conditions, and 
parameters, that hopefully capture all significant features of the real processes. The 
features that are significant may vary from case to case. Although practical model accuracy 
is limited primarily by the lack of detailed information on spatially variable aquifer
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properties, and usually not by numerical errors, it is nonetheless important that the models 
themselves do not induce unnecessary approximation errors. This report examines the 
error introduced by a common approximation used in solute-transport simulation that is 

associated with changes in fluid storage during transient flow.

Useful approximations for aquifer simulation include: ignoring vertical variability 
by averaging or integrating over the vertical dimension, thus yielding two-dimensional 
equations; assuming transmissivity is constant in time and independent of potentiometric 
head, thus yielding a linear flow equation; and, representing fluid-storage changes through 
a storage coefficient that can include the effects of fluid compressibility as well as 

compressibility of the aquifer and movement of the water table. Three widely applied 
numerical models of transient two-dimensional flow and solute transport (Konikow and 

Bredehoeft, 1978; Prickett and others, 1981; Voss, 1984) use these approximations and a 

"flow-equation-removed" form of the solute-transport equation. In this form, the 
divergence of flux and temporal derivative of fluid-storage terms are removed from the 
governing solute-transport equation. This form of the equation can reduce numerical errors 
because this manipulation occurs prior to numerical approximation of the derivative terms. 
Furthermore, this form is advantageous for Lagrangian-type models, such as those of 

Konikow and Bredehoeft (1978) and Prickett and others (1981), because only velocity, 

and not its derivative, appears in the solute-transport equation. However, in each of these 
numerical models the changes over time in fluid-storage terms remaining in the solute- 
transport equation are not considered. The inclusion of these changes in numerical models 

is not difficult because the derivatives of the fluid-storage terms do not occur in the flow- 

equation-removed transport equation; consequently there is little reason to make this 

approximation.

This report evaluates approximation errors in solute-transport models associated 
with fluid-storage changes during transient ground-water flow. The two-dimensional flow 
equation for constant fluid density and a consistent flow-equation-removed formulation of 

the solute-transport equation are briefly reviewed. Errors induced in the solute-transport 

solution by ignoring fluid-storage changes during transient flow are examined using two 

simple analytical models and an example numerical simulation. The appendix presents an 

analogous flow-equation-removed form of the solute-transport equation for aquifers where 
fluid density is a function of pressure alone.



GOVERNING EQUATIONS

For an incompressible fluid flowing in a two-dimensional aquifer, continuity 

requires (Konikow and Grove, 1977, p. 22):

(1)

where i = 1,2 is an index for Cartesian coordinates (xi = x, X2 = y) with implied 
summation, e is porosity, b is saturated thickness, Vi are velocity components, and W is

the withdrawal rate from the aquifer (W<0 for sources). The first term in (1) is the time 
rate of change of fluid volume per unit area, which is commonly related to potentiometric 

head, h, changes by:

3(eb) = S 3h 
3t ~ 3t , (2)

where the storage coefficient, S, accounts for changes in fluid volume per unit area from 
changes in aquifer saturated thickness and changes in porosity. For phreatic or water-table 
aquifers, a common assumption is S=e=constant (specific yield), and (2) equates changes 

in saturated thickness with potentiometric head changes. For confined aquifers, thickness 
may be assumed to be constant, in which case (2) tracks the change in porosity due to head 
change. Here, no assumptions are made on changes in porosity or thickness except that 

their product is represented by (2). If both porosity and thickness are assumed to be 
constant, then S=0 and the aquifer is in steady-state equilibrium with imposed boundary 

conditions. The appendix considers the case of compressible flow.

The second term in (1) is the divergence of volumetric flux and is related to head 
using Darcy's law:

(3)

where j = 1,2, and Ty is the transmissivity tensor. Substituting (2) and (3) into (1) yields a 
common form of the two-dimensional flow equation (Bear, 1979; Konikow and 
Bredehoeft, 1978, p. 2; Prickett and others, 1981, p. 5):



dt

For water-table aquifers, transmissivity is often assumed to be a linear function of head in 

that the saturated thickness changes proportionally to head: T = Kb = K (h - (elevation of 
aquifer bottom)), where K is hydraulic conductivity. For this study, this assumption is 
considered conceptually distinct from the assumptions on aquifer storage and thickness and 
porosity changes.

The governing equation for two-dimensional solute transport in incompressible 

flow can be written (Konikow and Grove, 1977, p. 21):

(ebCVJ - -ebD + CW = 0 ' J

where C is volumetric concentration (solute mass per unit volume of fluid), C is the 

concentration in the sink or source fluid, and Dy is the dispersion coefficient tensor. For 

sinks (W>0), it is often assumed that C=C. The accumulation term in (5) can be 

expanded:

_ ac 3(eb)   ^" ~-   ' ^   -  

Substituting (6) into (5), similarly expanding the advective term, adding (CW-CW), and 

rearranging yields (after Konikow and Grove, 1977, p. 22):

oC

(7)

But, from the fluid continuity equation (1), the last bracketed term in (7) is zero, leaving:

+ (C'-C)W = 0



or, dividing by eb (Konikow and Grove, 1977),

ac . ac a / ac
eb

n= 0

This form may reduce errors in numerical models because numerical errors in the flow 

equation solution are not propagated into the solute-transport equation, as in (5) (Voss, 
1984). This form can be thought of as a "flow-equation-removed" form; Voss (1984, p. 
60) designates this form as "fluid-mass-conservative". This form is also advantageous for 
Lagrangian-type models of solute transport because the advective term has only C within 
the derivative, and not V or other terms. In addition, sinks are naturally handled: if C=C, 

the last term drops out.

The product eb in (9) is not necessarily constant in time, as assumed in the 

numerical model of Konikow and Bredehoeft (1978). Prickett and others (1981) account 
for changing b in water-table aquifers, but use constant eb for confined systems, in which 
transmissivity is constant, even if S*0. Voss (1984) holds porosity, thickness, and fluid 

density constant in an analogous solute-transport equation in compressible-flow (see the 
appendix). The removal of the flow equation terms from (5) removes the time derivative of 
the product eb, but does not imply that the product is constant, even for confined aquifers. 
If eb is assumed to be constant, then by (2) S=0 and flow is at steady-state and in 

equilibrium with imposed boundary conditions.

Changes in fluid storage in the aquifer (if S*Q) are due to changes in porosity and 

thickness, and the product eb is a function of head (from (2)):

eb = (eb)o + \ S^-dtf (10) 

or, for constant S,

eb = (eb)0 + S [h - h0] , (11)



where subscript 0 represents the initial condition. For constant S, the product of porosity 
and thickness is a simple Hnear function of head. For water-table aquifers, porosity change 
often can be ignored and from (2), e=S. In this case, (11) equates changes in saturated

thickness with head changes.

The eb within the dispersion spatial derivative in (9) is a notational result of writing 

the dispersion coefficient as a function of velocity. The dispersion coefficient as a function 
of velocity is, for example (after Konikow and Grove, 1977):

. (12) 

In two-dimensional transport ebD may be written, using Darcy's law:

3h ahiv

and similarly for other components. The product eb cancels out of the velocity ratios in 
(13). Thus, the term ebDy within the derivative in (9) is determined from (13) and similar 
equations for other components and is independent of temporal changes in eb due to fluid 
storage. The velocity term in (9) is determined by (3) using eb from (11).

Models that do not account for changes in eb during transient flow will yield 

inaccurate solutions to the transport equation. In an aquifer undergoing transient flow with 
increasing heads, the use of a constant eb will result in exaggerated velocities. In addition, 

the contribution of sources is in error because the source mass is diluted by a storage term 
that is too small. These errors are quantified in the next section.



MODEL APPROXIMATION ERRORS

Two simple analytical examples and a numerical simulation illustrate the error 
induced by ignoring temporal changes in aquifer fluid storage during two-dimensional 

solute transport. Fluid density is assumed to be constant so that changes in fluid storage 
are due to changes in porosity and saturated thickness. Analogous errors occur in models 
of aquifers having compressible flow that hold fluid density constant in the flow-equation- 

removed transport equation (see the appendix).

Errors in Source Terms

Errors associated with the source term in the transport equation may be illustrated 
using a single-cell or lumped-parameter model of an aquifer within which solutes are 
completely mixed. The aquifer state is characterized by spatially averaged values of head 

and volumetric concentration. The flow equation reduces to:

s fr +w = 0 (14)
which for constant W and S has the solution:

h = bo - f (t-o) (15)

From (11), the product of porosity and thickness is given by:

eb = (eb)o-W(t-to) . (16)

For a single-cell model, the governing flow-equation-removed solute-transport 

equation (9) becomes:

ac { (c-ow = 0
dt eb ( (17) 

where eb is given by (16). The solution for this case (for constant C) is:



= (C-C0)(eb)o 
(eb)o-W(t-to) .

Equation (17) can also be solved under the assumption that eb is constant at its initial value, 

(eb)o. The solution for this approximate governing equation is:

= C-(C-Co)exp[^(t-to)]
(19)

The relative error using this approximation of constant eb can be compared to a 

solution that assumes steady-state flow. Instead of using the flow-equation-removed form 

(9), the single-cell model can be developed from the complete transport equation (5). 
Assuming that eb is constant, again at its initial value, (eb)o, the governing equation is 

(from (5)):

(20)

By integration the solution to this approximation is:

to)
(21)

A dimensionless error for the two approximations can be compared. For the first 

approximation, Ci, this error is:

(22) 

For the second approximation, C2, this error is:
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Figure 1. Graph showing relative error for approximate single-cell models:
approximation Ci assumes constant eb (equation (22)); approximation  2 

assumes steady-state flow (constant head) and is shown for different values of 

Co (equation (23)).

The relative errors are illustrated in Figure 1 as functions of the ratio (from (15)) 

S (h - hp) _
(eb)o (24)

which is the change in fluid volume divided by the initial fluid volume. The error of the 

steady-flow approximation  2 is shown for several values of Co relative to C. For an 
initial concentration of zero, the error induced by ignoring changes in eb in the flow- 

equation-removed solute-transport equation is about one-half the error induced by



assuming that the flow system is at steady state and head is constant If transients in the 
flow system are considered important and a transient flow model is used, then changes in 
eb in the flow-equation-removed transport equation may also be important, and the effect of 

these changes of a similar order-of-magnitude. For higher initial concentrations, the 

relative error is much greater for the steady-state flow approximation, although relative 
changes in C are smaller.

Errors in Velocity

In addition to the errors induced in source terms, dispersive and advective fluxes 
are also in error when changes in eb are ignored during transient flow. The relative error

for advective fluxes can be compared to errors induced by ignoring transients completely. 

For an advancing front, the error in the dispersive flux should be of comparable magnitude 
and in the same direction, because both the advective and dispersive flux terms are divided 
by the changing product eb in the governing equation (9). For this examination, consider 

transient radial flow from a fully-penetrating well in a confined (T=constant) aquifer. The 
transient head solution for constant Qw is given by (e.g., Bear, 1979):

where Qw is the pumping rate (Qw>0 is withdrawal), W(u) is the well function, and u, the 
well function parameter is:

4Tt , (26)

where r is the radial coordinate. From the definition of the well function (e.g., Bear, 

1979), the velocity is:

27tebr . (27)

The product eb changes in time if fluid density is assumed to be constant, and is given by 
(1 1). An approximate velocity, Vi, is obtained by assuming that eb is constant at its initial 
value (eb)o in (27). The relative velocity error of this approximation is:

10



'     (Sto"""" . (28)

As with source-term errors, the relative error in velocity is dependent on the ratio of the 
change in fluid storage to the initial fluid storage.

From geometric considerations, the steady-state velocity is:

V = ~>cw
V2 ~--~ - . (29)

If the initial value of eb is used in this steady-state flow approximation, then the error is:

(30)

The relative errors in velocity using the approximations Vi and V2 are shown in Figure 2 

for the case of injection (Qw<0).

The steady-state approximation has errors from two sources: (1) the initial eb is 

used instead of the changing value; and (2) all fluid volume comes from (or goes to) the 
boundary (at infinity) whereas in the transient solution a portion of the fluid volume comes 
from (or goes into) storage in the aquifer. The first source of error yields low velocities for 

pumping and high velocities for injection wells. The second error always results in 

velocities that are too high. The second error is most important at early times, when the 
well function parameter u is large. At large times, and for large changes in the product eb 

the errors of the steady-state approximation approach the error of the transient solution 
using eb fixed at its initial value, (eb)o. When the relative change in storage (see abscissa 

in Figure 2) is greater than u, the two approximations result in errors of the same order of 

magnitude.

11



0.1

1 -v
0.01

0.001

10
-4

u=

10
-4

0.001 0.01 0.1
S (h - h0) 

(eb)o

Figure 2. Graph showing relative error for approximate radial velocity during injection: 
approximation Vi is transient velocity using constant eb (equation (28)); 

approximation V2 is steady-state velocity (equation (30)) and is shown for 

several values of the well function parameter u=(Sr2)/(4Tt).
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Errors during Numerical Simulation of Advective Transport

The combined effects of source-term and velocity errors can be examined through 
numerical simulation of transient flow and advection-only transport in one dimension. The 
model of Konikow and Bredehoeft (1978) solves the transient flow equation using finite- 

difference techniques, and solves the volumetric-concentration form of the flow-equation- 

removed solute-transport equation (9) using finite-differences and the method of 

characteristics. The method of characteristics introduces no numerical dispersion when the 

dispersion coefficients are zero, as assumed here. Fluid density and aquifer transmissivity 
are assumed to be constant. The computer program was recently updated by the writer to 
account for changes in the product of porosity and thickness in the transport equation 
during transient flow. The previous model version, which ignored temporal changes in eb,

and the updated version are applied to a 185 m long aquifer discretized by 37 finite- 

difference blocks (5 m each). Potentiometric head at one end of the aquifer is held constant 
at 100 m, which is also the initial condition throughout the aquifer. Water containing solute 

at concentration 1.0 is injected at a constant rate of 0.0005 m2/s at the other end of the 
aquifer. Initial concentrations are zero everywhere. Aquifer hydraulic conductivity is 

0.0001 m/s, initial saturated thickness is 100 m, and initial porosity is 0.1. The storage 

coefficient is also 0.1. This storage coefficient corresponds to either an unconfined 
aquifer, or to a confined aquifer with a porous matrix compressibility of about 10'7 m2/N, 
the upper limit for sand reported by Freeze and Cherry (1979, p. 55). For comparison, the 
model is also applied under the assumption of steady-state flow, using constant porosity 

and thickness equivalent to the initial condition of the transient simulations. In addition, a 
modified version of the model, in which transmissivity is a linear function of head, is 

applied to show the effect of ignoring transmissivity changes in a water-table aquifer for 

this one-dimensional problem.
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Figure 3. Hydrographs of potentiometric head at several distances from injection block.

Potentiometric heads in the aquifer (Figure 3) are essentially at steady-state after 
about 7 days. Using constant transmissivity, at steady-state heads vary linearly from one 
end of the aquifer to the other. Because the storage coefficient is not zero, and heads have 
increased, the amount of water stored in the aquifer has increased. The maximum increase 
in storage occurs in the injection block (in this model, sources are assumed to be distributed 
uniformly over the finite-difference grid block) where the relative increase in storage 
(change in storage divided by initial storage) is approximately

S(h-h0)_0.1(109-100) _ 
(eb)o " 0.1(100) (31)

Concentration breakthrough is shown in Figure 4 for several distances from the 
injection block using constant eb=(eb)o (dashed curves) and updating eb in time following
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(11) to account for fluid-storage changes (solid curves). In addition, the breakthrough at 
75 m is shown for a steady-state flow simulation using eb=(eb)o (dots), and for transient 

water-table conditions (squares). Concentrations in the injection block do not immediately 
go to 1.0 because of the mixing of the injected water with the resident water in the block. 
This is an artifact of the model's representation of sources as areally distributed over the 

entire block. The differences between the solid and dashed curves at this point indicate that 
the dilution volume using constant eb (dashed curve) is too low, resulting in slightly 

increased concentrations.

0 10 15 

TIME, IN DAYS

25

Figure 4. Graph showing concentration breakthrough at several distances from the
injection block using different numerical model formulations: transient flow 
using eb updated in time (solid curves); transient flow using constant eb=(eb)o 

(dashed curves); steady-state flow using eb=(eb)o (dots); and transient flow 

under water-table conditions (squares).
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The error in the velocity term is more significant for this problem-constant eb

(dashed curve in Figure 4) yields a travel time about 7 percent too short at 75 m. At 75 m, 
breakthrough under transient-flow conditions using constant eb is essentially the same as 
breakthrough under steady-flow conditions using the same eb (dots). For this problem, if 
eb is not updated in time, the transport simulation is essentially unaffected by flow 

transients. Because this problem is one-dimensional, and a flux boundary condition is 
used, incorporating changes in transmissivity due to water-table movement does not 

significantly affect the solute transport solution (squares). The major effect of increasing 
saturated thickness on transport for this case is the change in fluid storage, not 
transmissivity, and this effect can be accounted for simply by updating eb in time.

SUMMARY AND CONCLUSIONS

Fluid divergence terms may be removed from the solute-transport equation to 
reduce numerical errors, to automatically handle sink boundary conditions, and to remove 
velocity spatial derivatives. This removes the time derivative of fluid storage from the 

transport equation, however, it does not imply that fluid-storage terms-porosity, saturated 

thickness, and fluid density remaining in the transport equation are constant during 

transient flow, as assumed in three widely applied numerical models.

When fluid-storage terms are held constant in the transport equation during transient 

flow, errors in both source and velocity calculations increase with increasing relative 
change in fluid storage. The source or dilution error is probably smaller than the velocity 

error for most cases. In water-table aquifers, changing fluid storage may have more impact 

on transport than changing transmissivity. For the one-dimensional numerical simulation 

presented, in which a fluid-flux boundary condition was used, solute transport in transient 

flow was essentially unaffected by incorporation of the dependence of transmissivity on 
head. However, ignoring changes in fluid storage resulted in about 7 percent error in 
solute travel time.

Fluid-storage terms in the flow-equation-removed form of the solute-transport 

equation must be updated in time to be consistent with the transient flow equation. This 

updating is quite simple, for constant storage coefficients, and should add insignificant 
computational burden to practical flow and transport models.
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APPENDIX

GOVERNING EQUATIONS FOR TRANSPORT IN 
COMPRESSIBLE-FLUID FLOW

This appendix presents a flow-equation-removed form of the solute-transport 
equation for the case of compressible fluid. Mass continuity for two-dimensional flow 
when fluid density is considered a function of pressure alone, p = p(p), may be written 

(after Bear, 1979, p. 92):

where i = 1, 2 is an index for Cartesian coordinates (xi = x, X2 = y) with implied 
summation, e is porosity, b is saturated thickness, Vi are velocity components, p 1 is the 

sink or source fluid density, and W is the withdrawal rate from the aquifer (W<0 for 
sources). The first term in (A. 1) is the time rate of change of fluid mass per unit area of 
aquifer. If density, porosity, and thickness are all assumed to be constant, then flow in the 

aquifer is in steady-state equilibrium with imposed boundary conditions.

A mass-concentration form of the solute-transport equation, useful for aquifers 
having variable fluid density, can be written (after Bear, 1979, p. 241):

(A.2)

where j = 1, 2, c is the mass of solute per unit mass of fluid, c1 is the concentration of the 
sink or source, and p 1 is the fluid density of the sink or source. For sinks it is often 

assumed that c'=c and p'=p. The accumulation term in (A.2) can be expanded:

3(epbc) 3c 3(epb)
+ c

to to dt (A.3)

Substituting (A3) into (A.2), similarly expanding the advective term, adding 
(p'cW-p'cW), and rearranging yields:
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+ c
(A.4)

But, from flow continuity, (A.1), the last bracketed term is zero, leaving:

epb-=r- + epbVi^r  - ^ lepbDij^ 1 + p'(c'-c)W = 0
xi XM xj/ . (A.5)

The product of porosity, fluid density, and saturated thickness in (A.5) is not constant in 

time unless the aquifer is considered to have no fluid storage capacity such that the flow 
field responds instantly to changing boundary conditions.

For the case of constant and uniform saturated thickness, (A.5) becomes (Voss, 
1984, p. 59):

<k + e v  -   (e D- ) | P'(c'-c)w = o
(A6)

In the model of Voss (1984, p. 24), fluid mass storage is related to pressure by:

(A.7)

where S0p is the specific pressure storativity and po is the initial fluid density. However, 

the product ep is held constant in the solute-transport equation (A.6) in the model. Because 

both S0p and po are constant, the product of porosity and fluid density is given, as a 

function of pressure, by a simple linear relation:

ep = (ep)o + PoSop [p - Po] , (A.8) 

where subscript 0 designates the initial condition.
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As shown in the body of this paper for the analogous case of constant density but 

changing thickness, holding fluid-storage terms constant in the solute-transport equation 

(A.6), as in the model of Voss (1984), leads to errors in velocity and source-term 
calculations. The magnitudes of these errors depend on the relative change in fluid mass 
storage.
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